Flavour-active compounds

sensory quality organoleptic properties

perception

♦ olphactoric smell odorous compounds

♦ gustative taste gustatory compounds

visual vision colour compounds (colourants)

auditorial hearing

haptic tactile

perception of smell + perception of taste = perception of aroma odorous compounds + gustatory compounds = aroma compounds

Odorous Compounds

olfactoric perception

~10 000 compounds, 50 – 1000 different compounds in individual foods

properties

- low polarity or non-polar compounds
- little soluble and unsoluble in water
- volatile

main groups

hydrocarbons, alcohols, ethers, carbonyl compounds (aldehydes, ketones), acetals (ketals), acids, functional derivatives of acids (esters, lactones), phenols, S- a N-aliphatic compounds, O-, S-, N-heterocycles

food	content in mg / kg
Beef meat	34
Bread (without ethanol)	6-10
Strawberry	2-8
Banana	12-18
Cocoa	100

Commodity	Type of aromatic substance
fruit ,vegetable	terpenes, alcohols, ketones, esters
alcoholic beverage	acids, esters, aldehydes, alcohols, acetals
roasting, frying product	Heterocyclic compounds

formation

primary compounds
 bound as glycosides, esters
 free

secondary compounds

 enzymatic reactions (damage of tissues on storage and processing)
 chemical reactions (storage, processing)

non-enzymatic browning reactions fermentation processes oxidative reactions thermal reactions (Maillard reaction)

Type of aromatic	% of the identified substances in total	
substance	alcoholic beverage	roasted coffee
hydrocarbons	8	11
alcohols	13	10
aldehydes	6	4
ketones	5	8
acetals	8	0
acids	11	4
esters	24	5
lactones	4	2
O-heterocycles	4	23
<i>N</i> -heterocycles	8	20
S-heterocycles	2	8

factors influencing aroma perception

- tresholds of perception
- stimuli threshold
- threshold of recognition

concentration

CH₃

 5α -androst-16-en-3-on feel 71% of women, 63% of men

- synergism, antagonism of compounds
- sensitivity of individuals
 age, sex, physiological and pathological conditions

adaptation anosmia

Compound	Occurence	Odour detection
Ethanol	Alcoholic beverage	threshold (mg/l) 100
Maltol	Caramel	35
Acetic Acid	Vinigar	25
Biacetyl	Butter	2
Trimethylamine	Fish	2
Butyric acid	Rancid butter	0.2
Vanillin	Vanilla	0.02
2-Isobutyl-3-methoxypyrazine	Bell pepper	0.000 002
(+)-(R)-p-Menth-1-en-8-thiol	Grapefruit	0.000 000 02
Bis(2-methyl-3-furyl)disulfide	Thiamine photolytic	0.000 000 002
	product CH=0	
maltol .OH	lectyi	nillin
tyl-3-methoxypyrazin CH ₃	CH ₃ S-S CH ₃ CH ₃ b	is(2-methyl-3-furyl)disulfide
- 3	p-menth-1-en-8-thiol	

Key odor components

Compound	Description	Occurrence
(R)-Oct-1-en-3-ol	Mushroom-like	Mushrooms, molds
Anethole	Anise-like	Anise seeds
Cinnamaldehyde	Cinnamon-like	Cinnamon bark
Vanillin	Vanilla-like	Dry vanilla beans
Eugenol	Clove-like	Clove plant fruits
(+)-(<i>S</i>)-Carvone	Caraway-like	Caraway and dill seeds
Diallyl disulfide	Garlic-like	Garlic
(2E,6Z)-Nona-2,6-dienal	Cucumber-like	Fresh cucumber
2-Isobutylthiazole	Tomato-like	Tomato leaves, fresh fruits

off-flavours

- processing (undesirable fermentation, preservation, thermal operation)
- storage (microbial contamination, reaction of components, oxidation, packaging material)
- animal source foods (feed)
- foods of Plant Origin (contamination of environment)

example

food	defect	source
milk orange juice beer	sun off-flavour terpenic off-flavour sun off-flavour	methional (Met, riboflavin) carvon (oxidation of limonene) Photolysis of isohumulone, reaction with H ₂ S (3-methylbut-2-en-1-thiol)

$$H_3C$$
 CH_3
 CH_3

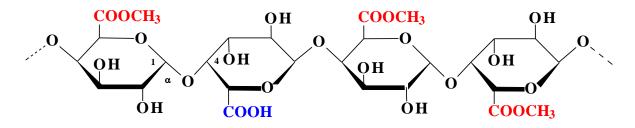
(4S,E)-isohumulon prenylalkohol

hydrocarbons

Alicyclic

$$\begin{array}{c} CH_3 \\ \hline \\ (R)\text{-limonene} \\ \hline \\ H_2C \\ \hline \\ CH_3 \\ \end{array}$$

aromatic and polycyclic aromatic (PAU)


benzene, toluene, xylene, benzo[a]pyrene contaminants

Alcohols

aliphatic saturated

Methanol

hydrolysis of pectin

comodity	allowed amount in Czech legislation	
	(g/l ethanol)	
spirit (alcohol)	0.8	
destillate	12	
pomace brandy	15	

Ethanol

sugar fermentation

higher alcohols

transformation of amino acids

R COOH
$$\frac{1/2 \text{ O}_2}{-\text{H}_2\text{O}}$$
 R COOH $\frac{\text{H}_2\text{O}}{-\text{NH}_3}$ R COOH $\frac{\text{COOH}}{-\text{CO}_2}$ R $\frac{\text{COOH}}{\text{CO}_2}$ R $\frac{\text{COOH}}{\text{O}}$ R $\frac{\text{COOH}}{\text{CO}_2}$ R $\frac{\text{COOH}}{\text{O}}$ R $\frac{\text{$

Alcohol	Amino acid
propan-1-ol	Thr
butan-1-ol	Thr
2-methylpropan-1-ol	Val
(S)-2-methylbutan-1-ol	lle
3-methylbutan-1-ol	Leu
2-phenylethanol	Phe

aliphatic unsaturated

oxidation of higher fatty acids

linolenic acid

$$CH_3$$
- CH_2
 CH_3 - CH_2
 CH_2 - OH_2
 (Z) -he x-3-e nal

 (Z) -he x-3-e n-1-ol

Leaf alcohol

terpenic and aromatic alcohols

menthol cinnamyl alcohol

mint, chewing gum cinnamon

$$CH_3$$
 $CH=CH-CH_2-OH$
 CH_3
 CH_3

aldehydes

terpenes and aromatics

CH₃
CH=O
CH₃

citral and (geranial) citrus essential oils

anisaldehyde anise, star anise, vanilla

vanillin; vanilla

cinnamaldehyde cinnamon

Ketones

terpenes

caraway

thujone

wormwood (absinth)

products fatty acids β-oxidation

methylketones

products of saccharides degradation

diketones

$$\begin{array}{c} CH_2\text{-COOH} \\ CH_2\text{-COOH} \\ CH_2\text{-COOH} \\ CH_2\text{-COOH} \\ \end{array} \begin{array}{c} CH_3\text{-C-COOH} \\ COOH \\ \end{array} \begin{array}{c} CH_3\text{-C-COOH} \\ COOH \\ \end{array} \begin{array}{c} CH_3\text{-C-COOH} \\ COOH \\ \end{array}$$

Butane-2,3-dione (diacetyl, biacetyl) + 3-Hydroxybutanone (acetoin) = aroma of butter

Acids and their functional derivatives

Acids

aliphatic saturated acids

fermentation products

formic, acetic, propionic, higher acids

lactic acid

esters

main compounds:

acetic acid ethanol

formic acid methanol

propionic acid butanol

butyric acid isoamylalkohol

isobutyric acid (mono)terpenes

fruity and flower aroma

alcoholic beverages ethyl acetate

beer $\sim 30 \text{ mg/l}$

wine 10-260 mg/l

fruit

apple acetates, butyrates

banana isoamylacetate

pineapple ethyl-3-(methylthio)propionate

lactones

heating
$$H_2O$$

$$R-CH-[CH_2]_n-COOH$$

$$R-CH$$

$$OH$$

$$R-CH$$

$$R-CH$$

$$O$$

 γ -hydroxyl acids $\rightarrow \gamma$ -lactones (butano-4-lactones)

 δ -hydroxyl acids $\rightarrow \delta$ -lactones (pentano-5-lactones)

aromatic hydroxy acids → cumarins, phthalides

$$CH_3-[CH_2]_n$$

γ-nonalactone	n = 4	coconut aroma
γ -decalactone	n = 5	peaches aroma
γ -dodecalactone	n = 7	butter aroma

sherry lactone

whisky lactone

maggi lactone (abhexon)

parasorbic acid

sedanenolid

coumarin

phenols

decarboxylation of phenolic acids, lignin degradation

$$R^1$$
 CO_2
 R^1
 HO
 $CH=CH-COOH$
 HO
 R^2
 $Vinylphenol$

sulphur containing compounds

degradation products of sulphur-containing compounds (sulphur amino acids, glucosinolates)

nitrogen containing compounds

decarboxylation products of amino acids, transformation products of

other compounds CO_2 R-CH-COOH $R-CH_2-NH_2$ amine (biogenic amine)

cheeses, meats, fish, fermentation products

post mortem

$$\begin{array}{ccc}
CH_{3} & \text{reduction} \\
CH_{3} - N & \longrightarrow & CH_{3} - N \\
CH_{3} & & & CH_{3}
\end{array}$$

trimethylaminoxide

sea fish 40-120 mg/kg indiferent

trimethylamine

fishy smell

heterocyclic compounds

O-, S-, N-heterocycles

2-isobutylthiazole tomato

2-isobutyl-3-methoxypyrazine bell pepper

products of Maillard reaction, products of other reactions

Maltol caramel

2-acetyl-1-pyrroline bread

2,4-dimethylthiophene fried onion

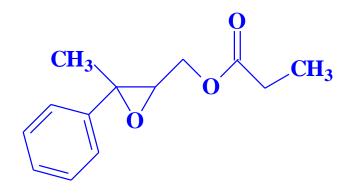
2,6-dimethylpyrazine chocolate and nuts

obtaining fragrances for flavoring food

75% natural

25% syntetic – 99% in nature (naturally identical)

1% not in the nature


materials essential oils

oleoresins

synthetic compounds

ethylmaltol caramel

ethylvanillin (bourbonal) vanilla sugar

ethyl-3-fenyl-3-methylglycidate strawberry (candies)

biological effect

beneficial effects

```
bactericidal and anti-inflammatory (borneol, eugenol, pinene, camphor, thymol, menthol) spasmolytic or cholinolytic effects (camphor, camphene, \alpha- and \beta-pinene) analeptic effects (camphene) antioxidant effects (essential oils of many kinds of spices: marjoram, sage, thyme)
```

toxic effects

```
chronic neurotoxicity (convulsions, damage to the cortex)
     α and β-thujone= dominant component
     wormwood, sage, clove oil
     absinthism
     Pulegone (essential oils of different varieties of mint)
carcinogenic effects alkenylbenzenes
     B-asarone (calamus oil)
     estragole (tarragon oil)
     methyleugenol (clove)
     safrole (essential oils of nutmeg, anise, cinnamon)
     isosafrole (laurel oil, clove)
     myristicin (oil vegetables: carrots, parsley, celery, caraway)
```

psychomimetic, hallucinogenic and narcotic effects (comparable to the effects of ethanol)

myristicin (nutmeg - flower, hazelnut)

hepatotoxic effects

coumarin

Compounds influencing food taste

perception of gustation

4 (5) basic tastes

sweet

salty

acid

bitter

umami

end of tongue

upper surface of tongue

sides of tongue

root of tongue, roof of the mouth

whole oral cavity

astringent

whole oral cavity

pungent (burning, hot) whole oral cavity

other sensations

Properties

- polar
- water-soluble
- non-volatile

Formation

- primary compounds
- secondary compounds

 enzymatic reactions (damage of tissues on storage and processing)
 chemical reactions (storage, processing)

factors influencing taste perception

thresholds of perception
 stimuli threshold
 threshold of recognition

Compound	Stimuli threshold	Compound	Stimuli threshold
	(vol. %)		(vol. %)
sweet		acid	
D-glucose	1.17	acetic	0.011
D-fructose	0.24	lactic	0.020
saccharose	0.36	citric	0.015
salty		bitter	
sodium chloride	0.175	limonin	0.0006
umami		quinine	0.001
Glu (Na-H)	0.012	caffeine	0.014

saccharide	stimuli threshold	threshold of
	(vol. %)	recognition
		(vol. %)
D-glucose	1.17	1.63
D-fructose	0.24	0.94
saccharose	0.36	0.81

SWEET COMPOUNDS

according to origin

- natural
- synthetic, identical with natural
- modified natural and synthetic

according to importance in nutrition (energy value)

- nutrients (source of energy)
- non-nutrients (they are not source of energy)

according to possibility to influence the blood sugar level

- contraindicated to diabetes
- without any influence

according to influence on caries

- cariogenic
- non-cariogenic

Sweetness

Saccharides

standard = 10% solution of saccharose

compound	Sweetness	compound	Sweetness
D-glucose	0.4-0.8	D-galactose	0.3-0.6
D-fructose	0.9-1.8	maltose	0.3-0.6
saccharose	1.0	lactose	0.2-0.6

artificial sweeteners – taste quality

natural sweet compounds

Compound	Sweetness	sructure	occurrence
phylloducin	200-800	isocoumarin	Hydrangea opuloides
glycyrrhizin	50	saponins	Glycyrrhiza glabra
hernandulcin	1250	aromatic ketone	Lippia dulcis
monellin	1500-3000	protein	Dioscorcophyllum comminsii
osladin	3000	steroidal glycoside	Polypodium vulgare
stevioside	100-300	steroidal glycoside	Stevia rebaudiana
thaumatin (thalin)	2000-3000	protein	Thaumatococcus daniellii

synthetic compounds

Compound	Sweetness (sucrose = 1)	
Cyclamates	30-35	
Aspartane	200	
Saccharin	300-350	
Neohesperidin dihydrochalcon	1100-1500	
Acesulfame K	200	
Dulcin	110-250	

OCH₃

$ne ohe speridin\ dihydrochalcone$

aspartame

OCH₃

saccharin

 $ace sulfame \ K$

dulcin

List of currenst EU approved sweeteners and their E-codes

E code	
E420	Sorbitol and sorbitol syrup
E421	Mannitol
E950	Acesulfame K
E951	Aspartame
E952	Cyclamic acid and its Na and Ca salts
E953	Isomalt
E954	Saccharin and its Na and Ca salts
E955	Sucralose
E957	Thaumatin
E959	Neohesperidin dihydrochalcone
E960	Steviol glycoside
E961	Neotame
E962	Salt of aspartane-acesulfame
E965	Maltitol and maltitol syrup
E966	Laktitol
E967	Xylitol
E968	Erythritol

SALTY COMPOUNDS

Inorganic salts, mostly NaCl

some salts of organic acids

taste quality, further attributes (bitter, metallic)

food classification

♦ with very low content
< 0.4 g/kg Na ~ < 1 g/kg NaCl</p>
milk, fruits, vegetables

with low content0.4-1.2 g/kg Na

meat, poultry, fish

with high content 1.2-4.0 g/kg Na
 bread, some bakery products, pickled vegetables

bread, some bakery products, pickied vegetables

with very high content > 4.0 g/kg Na
 some meat and fish products, olive, salty condiments

ACIDIC COMPOUNDS

non-dissociated carboxylic acids

\	aliphatic monocarboxylic	volatile	aroma, taste,
----------	--------------------------	----------	---------------

mineral acids, H₃O⁺ (pH)

taste quality, further attributes (fruity)

food classification

very sour	pH < 4,0	fruits
-----------------------------	----------	--------

		рН
1.	Vinegar 8%	2,53
2.	100% juice from sicilian citron - Lemon d'or	2,57
3.	Coca Cola	2,87
4.	Grapefruite nectar 50%	3,16
5.	Sour cabbage	3,59
6.	Pickled cucumber	3,80
7.	Yogurt	4,12
8.	Tomato juice100%	4,30
9.	Mineral water Vincentka	6,75
10.	Milk	6,86
11.	Mineral water Magnesia	8,05
12.	Egg – white	8,70

Lemon	citric acid	4.0-4.4%
Grapefruit	citric acid	1.2-2.1%
Tomato	citric acid	0.9-2.0%
Vinegar	acetic acid	8.0%
Pickled cucumber	acetic acid	1.0%
Sour cabbage	lactic acid	2.0%
Yogurt	lactic acid	1.0%
Coca Cola	phosphoric acid	0.08%

fruits citric, malic, quinic, ascorbic

vegetables citric, malic, oxalic

meat lactic

milk (vegetables) fermented products lactic

apple unripe quinic

apple ripe, pulp malic

apple ripe, skin citric, malic

aliphatic monocarboxylic acids

formic side product of fermentation, degradation of

saccharides, preservative compound

acetic acid fermentation (Acetobacter), vinegar

preservative compound

propionic propionic acid fermentation (*Propionibacterium*)

preservative compound

aliphatic dicarboxylic acids

oxalic metabolisms, antinutritive compound

succinic metabolisms

fumaric, (E)-but-2-enic metabolisms

content in carrot

♦ Oxalic 0-0,06%

♦ Succinic 0,002-0,013%

♦ Fumaric 0,0005-0,0008%

Quinic 0,004-0,006%

◆ Malic 0,4-5,2%

♦ Citric 0,034-0,093%

Food	Content of oxalic acid in %
Orange	0.004
Tomato	0.010
Spinach	0.54-0.98
Rhubarb	0.23-0.96
Теа	0.65-0.70

aliphatic hydroxyacids

lactic milk fermented products (Lactobacillus and others), meat

(R)-2-hydroxypropionic (S)-2-hydroxypropanic

milk fermented products	0.5-1.0%
Sour cabbage	1.5-2.5%
sour olive	0.8-1.2%
meat	0.2-0.8%

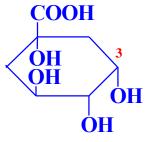
tartaric acid

fruits, vegetables, additives (acidulant)

L-tartaric, (2R,3R)-tartaric, L-threaric

D-tartaric

grapy acid (racemic mixture, racemate, K-H salts = tartar), mesotartaric (erythraric)


citric acid fruits, vegetables, additives (acidulant)

Content of main acid in fruit (%)

Fruit	Malic	Citric	Tartaric
Apple	0.2-1.3	0.0075-0.01	-
Orange	0.06-0.2	0.56-0.98	-
Lemon	0.17-0.30	4.0-4.4	-
Grapes	0.7-1.5	0.03-0.1	0.4-1.4

alicyclic acids

L-quinic fruits, vegetables (free, depsides)

aromatic acids

fruits, vegetables, cereals, (free, esters, glycosides)

seeds germination inhibition, antibacterial properties sensory properties (phenols, non-enzymatic browning reactions)

benzoic acid, cinnamic acid and derivatives

benzoic

p-hydroxybenzoic

protocatechuic

vanillic

syringic

3,4,5-triOH gallic

СООН

cinnamic

p-cumaric

caffeic

ferulic

sinapic

benzoic, p-hydroxybenzoic

caffeic

4-OH

3,4-diOH

4-OH, 3-MeO

4-OH, 3,5-diMeO

vanillic

gallic

food preservative

substrate oxidoreductases

component of alkaloids

component of tannins

apple, potato, coffee dates

chlorogenic = caffeic + quinic
dactylipheric = caffeic+ shikimic

BITTER COMPOUNDS

primary compounds

characteristic compounds of plants

secondary compounds

 formation during processing and storage (reaction products, metabolites of microorganisms)

alkaloids quinine (true alkaloids, quinolinic alkaloids), tonic water llex caffeine (protoalkaloids, purine alkaloids) coffee, tee, cocoa, guarana, cola drinks mate - prepared by steeping dried leaves of yerba mate (llex paraguariensis), "national infusion" in Argentina

CH₃ CH₃
CH₃

mg/kg nonalcoholic beverages

75

250

caffeine

spirits

300

fruits

grapefruits (bitter oranges)

flavonoids (flavanones)

naringin = naringenin (R = H) + neohesperidose, α -L-Rha-(1 \rightarrow 2)- β -D-Glc neohesperidin = hesperetin (R = CH₃) + neohesperidose sweet neohesperidin dihydrochalcon

olive

phenols

HO

$$H_3C$$
 CH_2OH
 OH
 OH

vegetables

lettuce, endive, chicory (lactucin) terpenes

spices and other plant materials wormwood (absinthin) terpenes

hops

derivatives phloroglucinol (1,3,5-benzenetriols)

bitter acids (18% dry matter)

- α-bitter acids (homologues humulone)
- β- bitter acids (homologues lupulone)

beer

isobitter acids

- iso-α-bitter acids (isohumulone)
- iso-β- bitter acids (isolupulone)

ADSTRINGENT COMPOUNDS

perception = protein interaction of saliva with polyphenolic compounds → denaturation (loss of protective role)

tannins

- hydrolysed polymers of gallic acid esters additives, little in food
- condensed polymers of flavan-3-ols (3,4-diols)
 food (fruits, wine)

hydrolysed tannins gallotannins

m-digallic acid (depside)

ellagotannins

hexahydroxybiphenylic acid (C-C dimer)

ellagic acid (lactone)

gallotannins

Chinese tannin

mixture of galloylesters and m-digalloylesters D-glucose elimination of turbidity caused by proteins (vinegar, beer, wine)

Ellagotannins

corilagin

cranberries leaves

condensed tannins (proanthocyanidins, flavolans)

dimers and higher oligomers (2-10 unites)

- flavan-3-ols (catechins)
- flavan-3,4-diols (leucoanthocyanidines)

monomers do not have the properties of tannins oxidised oligomers are coloured

afzelechins (R1 = R2 = H)
catechins (R1 = H, R2 = OH)
gallocatechins (R1 = R2 = OH

p-hydroxybenzoicprotocatechuicgallic

leucopelargonidin leucocyanidin leucodelphinidin

Examples

fruit and wine tannins

tea tannins

non-enzymatic browning reaction

type A (C-4 \rightarrow C-8, C-2 \rightarrow O \rightarrow C-8)

type B (C-4 \rightarrow C-6)

type B (C-4 \rightarrow C-8)

PUNGENT SUBSTANCES

primary compounds

characteristic components of plants

secondary compounds

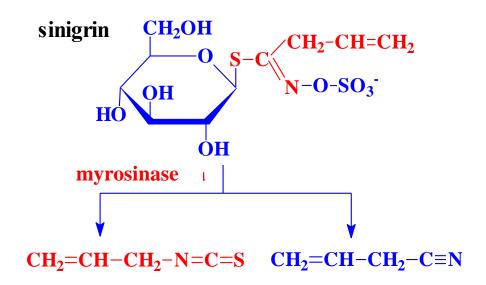
enzymatic reactions

Alkaloids

true alkaloids: piperine (black pepper)

$$\begin{array}{c|c} CH_3O \\ HO \\ \hline \end{array} \begin{array}{c} NH-O \\ CH_3 \end{array}$$

protoalkaloids: capsaicin (bell pepper, chilli)


phenols

isothiocyanates

$$CH_2$$
 $N=C=S$

allylisothiocyanate (mustard, horse radish)

formation

allyl isothiocyanate

allyl thiocyanate